65 research outputs found

    A graph-theoretic account of logics

    Get PDF
    A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the approach our results apply to very different logics encompassing, among others, substructural logics as well as logics with nondeterministic semantics, and subsume all logics endowed with an algebraic semantics

    Time-stamped claim logic

    Get PDF
    The main objective of this paper is to define a logic for reasoning about distributed time-stamped claims. Such a logic is interesting for theoretical reasons, i.e., as a logic per se, but also because it has a number of practical applications, in particular when one needs to reason about a huge amount of pieces of evidence collected from different sources, where some of the pieces of evidence may be contradictory and some sources are considered to be more trustworthy than others. We introduce the Time-Stamped Claim Logic including a sound and complete sequent calculus. In order to show how Time-Stamped Claim Logic can be used in practice, we consider a concrete cyber-attribution case study

    Modulated fibring and the collapsing problem

    Get PDF
    Fibring is recognized as one of the main mechanisms in combining logics, with great significance in the theory and applications of mathematical logic. However, an open challenge to fibring is posed by the collapsing problem: even when no symbols are shared, certain combinations of logics simply collapse to one of them, indicating that fibring imposes unwanted interconnections between the given logics. Modulated fibring allows a finer control of the combination, solving the collapsing problem both at the semantic and deductive levels. Main properties like soundness and completeness are shown to be preserved, comparison with fibring is discussed, and some important classes of examples are analyzed with respect to the collapsing problem.6741541156

    On graph-theoretic fibring of logics

    Get PDF

    Generic Modal Cut Elimination Applied to Conditional Logics

    Full text link
    We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity were explicitly stated as open in the literature

    Completeness and decidability results for hybrid(ised) logics

    Get PDF
    Adding to the modal description of transition structures the ability to refer to specific states, hybrid(ised) logics provide an interesting framework for the specification of reconfigurable systems. The qualifier ‘hybrid(ised)’ refers to a generic method of developing, on top of whatever specification logic is used to model software configurations, the elements of an hybrid language, including nominals and modalities. In such a context, this paper shows how a calculus for a hybrid(ised) logic can be generated from a calculus of the base logic and that, moreover, it preserves soundness and completeness. A second contribution establishes that hybridising a decidable logic also gives rise to a decidable hybrid(ised) one. These results pave the way to the development of dedicated proof tools for such logics used in the design of reconfigurable systems

    Asymmetric Combination of Logics is Functorial: A Survey

    Get PDF
    Asymmetric combination of logics is a formal process that develops the characteristic features of a specific logic on top of another one. Typical examples include the development of temporal, hybrid, and probabilistic dimensions over a given base logic. These examples are surveyed in the paper under a particular perspective—that this sort of combination of logics possesses a functorial nature. Such a view gives rise to several interesting questions. They range from the problem of combining translations (between logics), to that of ensuring property preservation along the process, and the way different asymmetric combinations can be related through appropriate natural transformations

    Early Detection, Diagnosis and Intervention Services for Young Children with Autism Spectrum Disorder in the European Union (ASDEU): Family and Professional Perspectives

    Get PDF
    Early services for ASD need to canvas the opinions of both parents and professionals. These opinions are seldom compared in the same research study. This study aims to ascertain the views of families and professionals on early detection, diagnosis and intervention services for young children with ASD. An online survey compiled and analysed data from 2032 respondents across 14 European countries (60.9% were parents; 39.1% professionals). Using an ordinal scale from 1 to 7, parents’ opinions were more negative (mean = 4.6; SD 2.2) compared to those of professionals (mean = 4.9; SD 1.5) when reporting satisfaction with services. The results suggest services should take into account child’s age, delays in accessing services, and active stakeholders’ participation when looking to improve services
    corecore